MakeItFrom.com
Menu (ESC)

AISI 316Ti Stainless Steel vs. N08925 Stainless Steel

Both AISI 316Ti stainless steel and N08925 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 79% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 316Ti stainless steel and the bottom bar is N08925 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 41
45
Fatigue Strength, MPa 200
310
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 82
80
Shear Strength, MPa 400
470
Tensile Strength: Ultimate (UTS), MPa 580
680
Tensile Strength: Yield (Proof), MPa 230
340

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 470
420
Maximum Temperature: Mechanical, °C 940
1100
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1380
1410
Specific Heat Capacity, J/kg-K 470
460
Thermal Conductivity, W/m-K 15
13
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 19
33
Density, g/cm3 7.9
8.1
Embodied Carbon, kg CO2/kg material 4.0
6.2
Embodied Energy, MJ/kg 55
84
Embodied Water, L/kg 150
200

Common Calculations

PREN (Pitting Resistance) 26
44
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
250
Resilience: Unit (Modulus of Resilience), kJ/m3 140
280
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 20
23
Strength to Weight: Bending, points 20
21
Thermal Diffusivity, mm2/s 4.0
3.5
Thermal Shock Resistance, points 13
15

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.020
Chromium (Cr), % 16 to 18
19 to 21
Copper (Cu), % 0
0.8 to 1.5
Iron (Fe), % 61.3 to 72
42.7 to 50.1
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 2.0 to 3.0
6.0 to 7.0
Nickel (Ni), % 10 to 14
24 to 26
Nitrogen (N), % 0 to 0.1
0.1 to 0.2
Phosphorus (P), % 0 to 0.045
0 to 0.045
Silicon (Si), % 0 to 0.75
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0 to 0.7
0