MakeItFrom.com
Menu (ESC)

AISI 316Ti Stainless Steel vs. S32803 Stainless Steel

Both AISI 316Ti stainless steel and S32803 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 88% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 316Ti stainless steel and the bottom bar is S32803 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
210
Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 41
18
Fatigue Strength, MPa 200
350
Poisson's Ratio 0.28
0.27
Rockwell B Hardness 84
86
Shear Modulus, GPa 82
81
Shear Strength, MPa 400
420
Tensile Strength: Ultimate (UTS), MPa 580
680
Tensile Strength: Yield (Proof), MPa 230
560

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 470
510
Maximum Temperature: Mechanical, °C 940
1100
Melting Completion (Liquidus), °C 1450
1450
Melting Onset (Solidus), °C 1380
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 15
16
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 19
19
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 4.0
3.7
Embodied Energy, MJ/kg 55
53
Embodied Water, L/kg 150
180

Common Calculations

PREN (Pitting Resistance) 26
36
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
120
Resilience: Unit (Modulus of Resilience), kJ/m3 140
760
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 20
25
Strength to Weight: Bending, points 20
22
Thermal Diffusivity, mm2/s 4.0
4.4
Thermal Shock Resistance, points 13
22

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.015
Chromium (Cr), % 16 to 18
28 to 29
Iron (Fe), % 61.3 to 72
62.9 to 67.1
Manganese (Mn), % 0 to 2.0
0 to 0.5
Molybdenum (Mo), % 2.0 to 3.0
1.8 to 2.5
Nickel (Ni), % 10 to 14
3.0 to 4.0
Niobium (Nb), % 0
0.15 to 0.5
Nitrogen (N), % 0 to 0.1
0 to 0.020
Phosphorus (P), % 0 to 0.045
0 to 0.020
Silicon (Si), % 0 to 0.75
0 to 0.55
Sulfur (S), % 0 to 0.030
0 to 0.0035
Titanium (Ti), % 0 to 0.7
0