MakeItFrom.com
Menu (ESC)

AISI 317 Stainless Steel vs. EN 1.0259 Steel

Both AISI 317 stainless steel and EN 1.0259 steel are iron alloys. They have 64% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AISI 317 stainless steel and the bottom bar is EN 1.0259 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 220
140
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 35 to 55
23
Fatigue Strength, MPa 250 to 330
200
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 79
73
Shear Strength, MPa 420 to 470
310
Tensile Strength: Ultimate (UTS), MPa 580 to 710
490
Tensile Strength: Yield (Proof), MPa 250 to 420
280

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 590
400
Melting Completion (Liquidus), °C 1400
1460
Melting Onset (Solidus), °C 1380
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 15
49
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 21
2.1
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 4.3
1.5
Embodied Energy, MJ/kg 59
19
Embodied Water, L/kg 160
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210 to 260
95
Resilience: Unit (Modulus of Resilience), kJ/m3 150 to 430
210
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 20 to 25
17
Strength to Weight: Bending, points 20 to 22
18
Thermal Diffusivity, mm2/s 4.1
13
Thermal Shock Resistance, points 12 to 15
15

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.2
Carbon (C), % 0 to 0.080
0 to 0.2
Chromium (Cr), % 18 to 20
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 58 to 68
96.7 to 99.98
Manganese (Mn), % 0 to 2.0
0 to 1.4
Molybdenum (Mo), % 3.0 to 4.0
0 to 0.080
Nickel (Ni), % 11 to 15
0 to 0.3
Niobium (Nb), % 0
0 to 0.010
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.025
Silicon (Si), % 0 to 0.75
0 to 0.4
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0
0 to 0.040
Vanadium (V), % 0
0 to 0.020