MakeItFrom.com
Menu (ESC)

AISI 317 Stainless Steel vs. EN 1.6553 Steel

Both AISI 317 stainless steel and EN 1.6553 steel are iron alloys. They have 66% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 317 stainless steel and the bottom bar is EN 1.6553 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 220
210 to 240
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 35 to 55
19 to 21
Fatigue Strength, MPa 250 to 330
330 to 460
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 79
73
Tensile Strength: Ultimate (UTS), MPa 580 to 710
710 to 800
Tensile Strength: Yield (Proof), MPa 250 to 420
470 to 670

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 590
420
Melting Completion (Liquidus), °C 1400
1460
Melting Onset (Solidus), °C 1380
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 15
39
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 21
2.7
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 4.3
1.6
Embodied Energy, MJ/kg 59
21
Embodied Water, L/kg 160
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210 to 260
130 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 150 to 430
600 to 1190
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 20 to 25
25 to 28
Strength to Weight: Bending, points 20 to 22
23 to 24
Thermal Diffusivity, mm2/s 4.1
10
Thermal Shock Resistance, points 12 to 15
21 to 23

Alloy Composition

Carbon (C), % 0 to 0.080
0.23 to 0.28
Chromium (Cr), % 18 to 20
0.4 to 0.8
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 58 to 68
95.6 to 98.2
Manganese (Mn), % 0 to 2.0
0.6 to 1.0
Molybdenum (Mo), % 3.0 to 4.0
0.15 to 0.3
Nickel (Ni), % 11 to 15
0.4 to 0.8
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.030
Silicon (Si), % 0 to 0.75
0 to 0.8
Sulfur (S), % 0 to 0.030
0 to 0.025
Vanadium (V), % 0
0 to 0.030

Comparable Variants