MakeItFrom.com
Menu (ESC)

AISI 317 Stainless Steel vs. Titanium 6-6-2

AISI 317 stainless steel belongs to the iron alloys classification, while titanium 6-6-2 belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 317 stainless steel and the bottom bar is titanium 6-6-2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 35 to 55
6.7 to 9.0
Fatigue Strength, MPa 250 to 330
590 to 670
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 79
44
Shear Strength, MPa 420 to 470
670 to 800
Tensile Strength: Ultimate (UTS), MPa 580 to 710
1140 to 1370
Tensile Strength: Yield (Proof), MPa 250 to 420
1040 to 1230

Thermal Properties

Latent Heat of Fusion, J/g 290
400
Maximum Temperature: Mechanical, °C 590
310
Melting Completion (Liquidus), °C 1400
1610
Melting Onset (Solidus), °C 1380
1560
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 15
5.5
Thermal Expansion, µm/m-K 17
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
1.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 21
40
Density, g/cm3 7.9
4.8
Embodied Carbon, kg CO2/kg material 4.3
29
Embodied Energy, MJ/kg 59
470
Embodied Water, L/kg 160
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210 to 260
89 to 99
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
34
Strength to Weight: Axial, points 20 to 25
66 to 79
Strength to Weight: Bending, points 20 to 22
50 to 57
Thermal Diffusivity, mm2/s 4.1
2.1
Thermal Shock Resistance, points 12 to 15
75 to 90

Alloy Composition

Aluminum (Al), % 0
5.0 to 6.0
Carbon (C), % 0 to 0.080
0 to 0.050
Chromium (Cr), % 18 to 20
0
Copper (Cu), % 0
0.35 to 1.0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 58 to 68
0.35 to 1.0
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 3.0 to 4.0
5.0 to 6.0
Nickel (Ni), % 11 to 15
0
Nitrogen (N), % 0 to 0.1
0 to 0.040
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
1.5 to 2.5
Titanium (Ti), % 0
82.8 to 87.8
Residuals, % 0
0 to 0.4