MakeItFrom.com
Menu (ESC)

AISI 317L Stainless Steel vs. C84000 Brass

AISI 317L stainless steel belongs to the iron alloys classification, while C84000 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 317L stainless steel and the bottom bar is C84000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
65
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 44
27
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 82
42
Tensile Strength: Ultimate (UTS), MPa 550
250
Tensile Strength: Yield (Proof), MPa 250
140

Thermal Properties

Latent Heat of Fusion, J/g 290
190
Maximum Temperature: Mechanical, °C 1010
170
Melting Completion (Liquidus), °C 1400
1040
Melting Onset (Solidus), °C 1380
940
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 14
72
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
16
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
17

Otherwise Unclassified Properties

Base Metal Price, % relative 21
30
Density, g/cm3 7.9
8.6
Embodied Carbon, kg CO2/kg material 4.3
3.0
Embodied Energy, MJ/kg 59
49
Embodied Water, L/kg 160
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
58
Resilience: Unit (Modulus of Resilience), kJ/m3 150
83
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 19
8.2
Strength to Weight: Bending, points 19
10
Thermal Diffusivity, mm2/s 3.8
22
Thermal Shock Resistance, points 12
9.0

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.020
Boron (B), % 0
0 to 0.1
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 18 to 20
0
Copper (Cu), % 0
82 to 89
Iron (Fe), % 58 to 68
0 to 0.4
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0 to 2.0
0 to 0.010
Molybdenum (Mo), % 3.0 to 4.0
0
Nickel (Ni), % 11 to 15
0.5 to 2.0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.050
Silicon (Si), % 0 to 0.75
0 to 0.0050
Sulfur (S), % 0 to 0.030
0.1 to 0.65
Tin (Sn), % 0
2.0 to 4.0
Zinc (Zn), % 0
5.0 to 14
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.7