MakeItFrom.com
Menu (ESC)

AISI 317L Stainless Steel vs. C85400 Brass

AISI 317L stainless steel belongs to the iron alloys classification, while C85400 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 317L stainless steel and the bottom bar is C85400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
55
Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 44
23
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 82
40
Tensile Strength: Ultimate (UTS), MPa 550
220
Tensile Strength: Yield (Proof), MPa 250
85

Thermal Properties

Latent Heat of Fusion, J/g 290
180
Maximum Temperature: Mechanical, °C 1010
130
Melting Completion (Liquidus), °C 1400
940
Melting Onset (Solidus), °C 1380
940
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 14
89
Thermal Expansion, µm/m-K 17
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
20
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
22

Otherwise Unclassified Properties

Base Metal Price, % relative 21
25
Density, g/cm3 7.9
8.3
Embodied Carbon, kg CO2/kg material 4.3
2.8
Embodied Energy, MJ/kg 59
46
Embodied Water, L/kg 160
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
40
Resilience: Unit (Modulus of Resilience), kJ/m3 150
35
Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 19
7.5
Strength to Weight: Bending, points 19
9.9
Thermal Diffusivity, mm2/s 3.8
28
Thermal Shock Resistance, points 12
7.6

Alloy Composition

Aluminum (Al), % 0
0 to 0.35
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 18 to 20
0
Copper (Cu), % 0
65 to 70
Iron (Fe), % 58 to 68
0 to 0.7
Lead (Pb), % 0
1.5 to 3.8
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 3.0 to 4.0
0
Nickel (Ni), % 11 to 15
0 to 1.0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0 to 0.050
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.5 to 1.5
Zinc (Zn), % 0
24 to 32
Residuals, % 0
0 to 1.1