MakeItFrom.com
Menu (ESC)

AISI 317LM Stainless Steel vs. N08700 Stainless Steel

Both AISI 317LM stainless steel and N08700 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 88% of their average alloy composition in common.

For each property being compared, the top bar is AISI 317LM stainless steel and the bottom bar is N08700 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
170
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 46
32
Fatigue Strength, MPa 210
210
Poisson's Ratio 0.28
0.28
Reduction in Area, % 56
45
Rockwell B Hardness 82
81
Shear Modulus, GPa 79
79
Shear Strength, MPa 410
410
Tensile Strength: Ultimate (UTS), MPa 590
620
Tensile Strength: Yield (Proof), MPa 230
270

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Maximum Temperature: Corrosion, °C 420
460
Maximum Temperature: Mechanical, °C 300
1100
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1410
1400
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 14
13
Thermal Expansion, µm/m-K 16
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 24
32
Density, g/cm3 8.0
8.1
Embodied Carbon, kg CO2/kg material 4.8
6.0
Embodied Energy, MJ/kg 65
82
Embodied Water, L/kg 170
200

Common Calculations

PREN (Pitting Resistance) 35
36
Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
160
Resilience: Unit (Modulus of Resilience), kJ/m3 130
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 21
21
Strength to Weight: Bending, points 20
20
Thermal Diffusivity, mm2/s 3.8
3.5
Thermal Shock Resistance, points 13
14

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.040
Chromium (Cr), % 18 to 20
19 to 23
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 54.4 to 64.5
42 to 52.7
Manganese (Mn), % 0 to 2.0
0 to 2.0
Molybdenum (Mo), % 4.0 to 5.0
4.3 to 5.0
Nickel (Ni), % 13.5 to 17.5
24 to 26
Niobium (Nb), % 0
0 to 0.4
Nitrogen (N), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030