MakeItFrom.com
Menu (ESC)

AISI 317LMN Stainless Steel vs. AISI 316 Stainless Steel

Both AISI 317LMN stainless steel and AISI 316 stainless steel are iron alloys. They have a moderately high 93% of their average alloy composition in common. There are 35 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is AISI 317LMN stainless steel and the bottom bar is AISI 316 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
160 to 360
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 45
8.0 to 55
Fatigue Strength, MPa 250
210 to 430
Poisson's Ratio 0.28
0.28
Reduction in Area, % 56
80
Rockwell B Hardness 84
80
Shear Modulus, GPa 79
78
Shear Strength, MPa 430
350 to 690
Tensile Strength: Ultimate (UTS), MPa 620
520 to 1180
Tensile Strength: Yield (Proof), MPa 270
230 to 850

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 420
410
Maximum Temperature: Mechanical, °C 1020
590
Melting Completion (Liquidus), °C 1460
1400
Melting Onset (Solidus), °C 1410
1380
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 14
15
Thermal Expansion, µm/m-K 16
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 24
19
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 4.8
3.9
Embodied Energy, MJ/kg 65
53
Embodied Water, L/kg 170
150

Common Calculations

PREN (Pitting Resistance) 36
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
85 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 180
130 to 1820
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 22
18 to 41
Strength to Weight: Bending, points 20
18 to 31
Thermal Diffusivity, mm2/s 3.8
4.1
Thermal Shock Resistance, points 14
11 to 26

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 17 to 20
16 to 18
Iron (Fe), % 54.4 to 65.4
62 to 72
Manganese (Mn), % 0 to 2.0
0 to 2.0
Molybdenum (Mo), % 4.0 to 5.0
2.0 to 3.0
Nickel (Ni), % 13.5 to 17.5
10 to 14
Nitrogen (N), % 0.1 to 0.2
0 to 0.1
Phosphorus (P), % 0 to 0.045
0 to 0.045
Silicon (Si), % 0 to 0.75
0 to 0.75
Sulfur (S), % 0 to 0.030
0 to 0.030