MakeItFrom.com
Menu (ESC)

AISI 317LMN Stainless Steel vs. EN 1.4565 Stainless Steel

Both AISI 317LMN stainless steel and EN 1.4565 stainless steel are iron alloys. They have 86% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 317LMN stainless steel and the bottom bar is EN 1.4565 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 45
35
Fatigue Strength, MPa 250
380
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 79
81
Shear Strength, MPa 430
590
Tensile Strength: Ultimate (UTS), MPa 620
880
Tensile Strength: Yield (Proof), MPa 270
480

Thermal Properties

Latent Heat of Fusion, J/g 290
310
Maximum Temperature: Corrosion, °C 420
460
Maximum Temperature: Mechanical, °C 1020
1100
Melting Completion (Liquidus), °C 1460
1420
Melting Onset (Solidus), °C 1410
1380
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 14
12
Thermal Expansion, µm/m-K 16
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 24
28
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 4.8
5.4
Embodied Energy, MJ/kg 65
74
Embodied Water, L/kg 170
210

Common Calculations

PREN (Pitting Resistance) 36
47
Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
260
Resilience: Unit (Modulus of Resilience), kJ/m3 180
550
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 22
31
Strength to Weight: Bending, points 20
26
Thermal Diffusivity, mm2/s 3.8
3.2
Thermal Shock Resistance, points 14
21

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 17 to 20
24 to 26
Iron (Fe), % 54.4 to 65.4
41.2 to 50.7
Manganese (Mn), % 0 to 2.0
5.0 to 7.0
Molybdenum (Mo), % 4.0 to 5.0
4.0 to 5.0
Nickel (Ni), % 13.5 to 17.5
16 to 19
Niobium (Nb), % 0
0 to 0.15
Nitrogen (N), % 0.1 to 0.2
0.3 to 0.6
Phosphorus (P), % 0 to 0.045
0 to 0.030
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015