MakeItFrom.com
Menu (ESC)

AISI 317LMN Stainless Steel vs. C83300 Brass

AISI 317LMN stainless steel belongs to the iron alloys classification, while C83300 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 317LMN stainless steel and the bottom bar is C83300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
35
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 45
35
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 79
42
Tensile Strength: Ultimate (UTS), MPa 620
220
Tensile Strength: Yield (Proof), MPa 270
69

Thermal Properties

Latent Heat of Fusion, J/g 290
200
Maximum Temperature: Mechanical, °C 1020
180
Melting Completion (Liquidus), °C 1460
1060
Melting Onset (Solidus), °C 1410
1030
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 14
160
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
32
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
33

Otherwise Unclassified Properties

Base Metal Price, % relative 24
30
Density, g/cm3 8.0
8.8
Embodied Carbon, kg CO2/kg material 4.8
2.7
Embodied Energy, MJ/kg 65
44
Embodied Water, L/kg 170
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
60
Resilience: Unit (Modulus of Resilience), kJ/m3 180
21
Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 22
6.9
Strength to Weight: Bending, points 20
9.2
Thermal Diffusivity, mm2/s 3.8
48
Thermal Shock Resistance, points 14
7.9

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 17 to 20
0
Copper (Cu), % 0
92 to 94
Iron (Fe), % 54.4 to 65.4
0
Lead (Pb), % 0
1.0 to 2.0
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 4.0 to 5.0
0
Nickel (Ni), % 13.5 to 17.5
0
Nitrogen (N), % 0.1 to 0.2
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
1.0 to 2.0
Zinc (Zn), % 0
2.0 to 6.0
Residuals, % 0
0 to 0.7