MakeItFrom.com
Menu (ESC)

AISI 317LMN Stainless Steel vs. C92900 Bronze

AISI 317LMN stainless steel belongs to the iron alloys classification, while C92900 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 317LMN stainless steel and the bottom bar is C92900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
84
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 45
9.1
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 79
40
Tensile Strength: Ultimate (UTS), MPa 620
350
Tensile Strength: Yield (Proof), MPa 270
190

Thermal Properties

Latent Heat of Fusion, J/g 290
190
Maximum Temperature: Mechanical, °C 1020
170
Melting Completion (Liquidus), °C 1460
1030
Melting Onset (Solidus), °C 1410
860
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 14
58
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 24
35
Density, g/cm3 8.0
8.8
Embodied Carbon, kg CO2/kg material 4.8
3.8
Embodied Energy, MJ/kg 65
61
Embodied Water, L/kg 170
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
27
Resilience: Unit (Modulus of Resilience), kJ/m3 180
170
Stiffness to Weight: Axial, points 14
6.8
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 22
11
Strength to Weight: Bending, points 20
13
Thermal Diffusivity, mm2/s 3.8
18
Thermal Shock Resistance, points 14
13

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 17 to 20
0
Copper (Cu), % 0
82 to 86
Iron (Fe), % 54.4 to 65.4
0 to 0.2
Lead (Pb), % 0
2.0 to 3.2
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 4.0 to 5.0
0
Nickel (Ni), % 13.5 to 17.5
2.8 to 4.0
Nitrogen (N), % 0.1 to 0.2
0
Phosphorus (P), % 0 to 0.045
0 to 1.5
Silicon (Si), % 0 to 0.75
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.050
Tin (Sn), % 0
9.0 to 11
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.7