MakeItFrom.com
Menu (ESC)

AISI 317LN Stainless Steel vs. C23000 Brass

AISI 317LN stainless steel belongs to the iron alloys classification, while C23000 brass belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 317LN stainless steel and the bottom bar is C23000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 45
2.9 to 47
Poisson's Ratio 0.28
0.33
Rockwell B Hardness 84
48 to 87
Shear Modulus, GPa 79
42
Shear Strength, MPa 430
220 to 340
Tensile Strength: Ultimate (UTS), MPa 620
280 to 590
Tensile Strength: Yield (Proof), MPa 270
83 to 480

Thermal Properties

Latent Heat of Fusion, J/g 290
190
Maximum Temperature: Mechanical, °C 1010
170
Melting Completion (Liquidus), °C 1450
1030
Melting Onset (Solidus), °C 1400
990
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 14
160
Thermal Expansion, µm/m-K 16
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
37
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
39

Otherwise Unclassified Properties

Base Metal Price, % relative 21
28
Density, g/cm3 7.9
8.6
Embodied Carbon, kg CO2/kg material 4.3
2.6
Embodied Energy, MJ/kg 59
43
Embodied Water, L/kg 160
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
6.2 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 190
31 to 1040
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 22
8.9 to 19
Strength to Weight: Bending, points 20
11 to 18
Thermal Diffusivity, mm2/s 3.9
48
Thermal Shock Resistance, points 14
9.4 to 20

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 18 to 20
0
Copper (Cu), % 0
84 to 86
Iron (Fe), % 57.9 to 67.9
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 3.0 to 4.0
0
Nickel (Ni), % 11 to 15
0
Nitrogen (N), % 0.1 to 0.22
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
13.7 to 16
Residuals, % 0
0 to 0.2