MakeItFrom.com
Menu (ESC)

AISI 317LN Stainless Steel vs. R58150 Titanium

AISI 317LN stainless steel belongs to the iron alloys classification, while R58150 titanium belongs to the titanium alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is AISI 317LN stainless steel and the bottom bar is R58150 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
140
Elongation at Break, % 45
13
Fatigue Strength, MPa 250
330
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 79
52
Shear Strength, MPa 430
470
Tensile Strength: Ultimate (UTS), MPa 620
770
Tensile Strength: Yield (Proof), MPa 270
550

Thermal Properties

Latent Heat of Fusion, J/g 290
410
Maximum Temperature: Mechanical, °C 1010
320
Melting Completion (Liquidus), °C 1450
1760
Melting Onset (Solidus), °C 1400
1700
Specific Heat Capacity, J/kg-K 470
500
Thermal Expansion, µm/m-K 16
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 21
48
Density, g/cm3 7.9
5.4
Embodied Carbon, kg CO2/kg material 4.3
31
Embodied Energy, MJ/kg 59
480
Embodied Water, L/kg 160
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
94
Resilience: Unit (Modulus of Resilience), kJ/m3 190
1110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
32
Strength to Weight: Axial, points 22
40
Strength to Weight: Bending, points 20
35
Thermal Shock Resistance, points 14
48

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.1
Chromium (Cr), % 18 to 20
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 57.9 to 67.9
0 to 0.1
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 3.0 to 4.0
14 to 16
Nickel (Ni), % 11 to 15
0
Nitrogen (N), % 0.1 to 0.22
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
83.5 to 86