MakeItFrom.com
Menu (ESC)

AISI 321 Stainless Steel vs. ACI-ASTM CE3MN Steel

Both AISI 321 stainless steel and ACI-ASTM CE3MN steel are iron alloys. They have 88% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 321 stainless steel and the bottom bar is ACI-ASTM CE3MN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 34 to 50
20
Fatigue Strength, MPa 220 to 270
380
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 77
81
Tensile Strength: Ultimate (UTS), MPa 590 to 690
770
Tensile Strength: Yield (Proof), MPa 220 to 350
590

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 480
450
Maximum Temperature: Mechanical, °C 870
1100
Melting Completion (Liquidus), °C 1430
1450
Melting Onset (Solidus), °C 1400
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 16
15
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 16
21
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.2
4.2
Embodied Energy, MJ/kg 45
58
Embodied Water, L/kg 140
180

Common Calculations

PREN (Pitting Resistance) 19
43
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190 to 230
140
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 310
840
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21 to 25
27
Strength to Weight: Bending, points 20 to 22
24
Thermal Diffusivity, mm2/s 4.1
4.1
Thermal Shock Resistance, points 13 to 15
21

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 17 to 19
24 to 26
Iron (Fe), % 65.3 to 74
58.1 to 65.9
Manganese (Mn), % 0 to 2.0
0 to 1.5
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 9.0 to 12
6.0 to 8.0
Nitrogen (N), % 0 to 0.1
0.1 to 0.3
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.040
Titanium (Ti), % 0 to 0.7
0