MakeItFrom.com
Menu (ESC)

AISI 321 Stainless Steel vs. ACI-ASTM CF20 Steel

Both AISI 321 stainless steel and ACI-ASTM CF20 steel are iron alloys. They have a very high 98% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is AISI 321 stainless steel and the bottom bar is ACI-ASTM CF20 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 210
160
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 34 to 50
50
Fatigue Strength, MPa 220 to 270
240
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
77
Tensile Strength: Ultimate (UTS), MPa 590 to 690
530
Tensile Strength: Yield (Proof), MPa 220 to 350
250

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 480
420
Maximum Temperature: Mechanical, °C 870
970
Melting Completion (Liquidus), °C 1430
1420
Melting Onset (Solidus), °C 1400
1410
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 16
16
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 16
16
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.2
3.1
Embodied Energy, MJ/kg 45
44
Embodied Water, L/kg 140
150

Common Calculations

PREN (Pitting Resistance) 19
20
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190 to 230
220
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 310
160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21 to 25
19
Strength to Weight: Bending, points 20 to 22
19
Thermal Diffusivity, mm2/s 4.1
4.3
Thermal Shock Resistance, points 13 to 15
11

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.2
Chromium (Cr), % 17 to 19
18 to 21
Iron (Fe), % 65.3 to 74
64.2 to 74
Manganese (Mn), % 0 to 2.0
0 to 1.5
Nickel (Ni), % 9.0 to 12
8.0 to 11
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.75
0 to 2.0
Sulfur (S), % 0 to 0.030
0 to 0.040
Titanium (Ti), % 0 to 0.7
0