MakeItFrom.com
Menu (ESC)

AISI 321 Stainless Steel vs. AWS E308

Both AISI 321 stainless steel and AWS E308 are iron alloys. They have a very high 97% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is AISI 321 stainless steel and the bottom bar is AWS E308.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 34 to 50
40
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
78
Tensile Strength: Ultimate (UTS), MPa 590 to 690
620

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Melting Completion (Liquidus), °C 1430
1420
Melting Onset (Solidus), °C 1400
1380
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 16
16
Thermal Expansion, µm/m-K 17
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 16
16
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.2
3.2
Embodied Energy, MJ/kg 45
46
Embodied Water, L/kg 140
150

Common Calculations

PREN (Pitting Resistance) 19
21
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21 to 25
22
Strength to Weight: Bending, points 20 to 22
21
Thermal Diffusivity, mm2/s 4.1
4.2
Thermal Shock Resistance, points 13 to 15
16

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.080
Chromium (Cr), % 17 to 19
18 to 21
Copper (Cu), % 0
0 to 0.75
Iron (Fe), % 65.3 to 74
62.9 to 72.5
Manganese (Mn), % 0 to 2.0
0.5 to 2.5
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 9.0 to 12
9.0 to 11
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0 to 0.7
0