MakeItFrom.com
Menu (ESC)

AISI 321 Stainless Steel vs. AWS E80C-Ni1

Both AISI 321 stainless steel and AWS E80C-Ni1 are iron alloys. They have 72% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 321 stainless steel and the bottom bar is AWS E80C-Ni1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 34 to 50
27
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
72
Tensile Strength: Ultimate (UTS), MPa 590 to 690
620
Tensile Strength: Yield (Proof), MPa 220 to 350
540

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 16
40
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 16
2.6
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.2
1.6
Embodied Energy, MJ/kg 45
21
Embodied Water, L/kg 140
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190 to 230
160
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 310
770
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 21 to 25
22
Strength to Weight: Bending, points 20 to 22
21
Thermal Diffusivity, mm2/s 4.1
11
Thermal Shock Resistance, points 13 to 15
18

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.12
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 0
0 to 0.35
Iron (Fe), % 65.3 to 74
95.1 to 99.2
Manganese (Mn), % 0 to 2.0
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.3
Nickel (Ni), % 9.0 to 12
0.8 to 1.1
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.025
Silicon (Si), % 0 to 0.75
0 to 0.9
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0 to 0.7
0
Vanadium (V), % 0
0 to 0.030
Residuals, % 0
0 to 0.5