MakeItFrom.com
Menu (ESC)

AISI 321 Stainless Steel vs. EN 1.4458 Stainless Steel

Both AISI 321 stainless steel and EN 1.4458 stainless steel are iron alloys. They have 77% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 321 stainless steel and the bottom bar is EN 1.4458 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 210
150
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 34 to 50
34
Fatigue Strength, MPa 220 to 270
150
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
78
Tensile Strength: Ultimate (UTS), MPa 590 to 690
510
Tensile Strength: Yield (Proof), MPa 220 to 350
190

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 480
430
Maximum Temperature: Mechanical, °C 870
1100
Melting Completion (Liquidus), °C 1430
1420
Melting Onset (Solidus), °C 1400
1370
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 16
16
Thermal Expansion, µm/m-K 17
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 16
30
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 3.2
5.4
Embodied Energy, MJ/kg 45
75
Embodied Water, L/kg 140
200

Common Calculations

PREN (Pitting Resistance) 19
30
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190 to 230
140
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 310
89
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 21 to 25
17
Strength to Weight: Bending, points 20 to 22
18
Thermal Diffusivity, mm2/s 4.1
4.2
Thermal Shock Resistance, points 13 to 15
12

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 17 to 19
19 to 22
Copper (Cu), % 0
0 to 2.0
Iron (Fe), % 65.3 to 74
40.2 to 53
Manganese (Mn), % 0 to 2.0
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 2.5
Nickel (Ni), % 9.0 to 12
26 to 30
Nitrogen (N), % 0 to 0.1
0 to 0.2
Phosphorus (P), % 0 to 0.045
0 to 0.035
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.025
Titanium (Ti), % 0 to 0.7
0