MakeItFrom.com
Menu (ESC)

AISI 321 Stainless Steel vs. EN 1.4570 Stainless Steel

Both AISI 321 stainless steel and EN 1.4570 stainless steel are iron alloys. They have a very high 98% of their average alloy composition in common.

For each property being compared, the top bar is AISI 321 stainless steel and the bottom bar is EN 1.4570 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 210
190
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 34 to 50
40
Fatigue Strength, MPa 220 to 270
180
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
77
Shear Strength, MPa 420 to 460
410
Tensile Strength: Ultimate (UTS), MPa 590 to 690
610
Tensile Strength: Yield (Proof), MPa 220 to 350
210

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 480
410
Maximum Temperature: Mechanical, °C 870
930
Melting Completion (Liquidus), °C 1430
1420
Melting Onset (Solidus), °C 1400
1370
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 16
15
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 16
15
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.2
3.1
Embodied Energy, MJ/kg 45
43
Embodied Water, L/kg 140
150

Common Calculations

PREN (Pitting Resistance) 19
20
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190 to 230
190
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 310
110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21 to 25
22
Strength to Weight: Bending, points 20 to 22
20
Thermal Diffusivity, mm2/s 4.1
4.0
Thermal Shock Resistance, points 13 to 15
14

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.080
Chromium (Cr), % 17 to 19
17 to 19
Copper (Cu), % 0
1.4 to 1.8
Iron (Fe), % 65.3 to 74
65 to 73.5
Manganese (Mn), % 0 to 2.0
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.6
Nickel (Ni), % 9.0 to 12
8.0 to 10
Nitrogen (N), % 0 to 0.1
0 to 0.1
Phosphorus (P), % 0 to 0.045
0 to 0.045
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.030
0.15 to 0.35
Titanium (Ti), % 0 to 0.7
0