MakeItFrom.com
Menu (ESC)

AISI 321 Stainless Steel vs. C70700 Copper-nickel

AISI 321 stainless steel belongs to the iron alloys classification, while C70700 copper-nickel belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AISI 321 stainless steel and the bottom bar is C70700 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 210
73
Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 34 to 50
39
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
46
Shear Strength, MPa 420 to 460
220
Tensile Strength: Ultimate (UTS), MPa 590 to 690
320
Tensile Strength: Yield (Proof), MPa 220 to 350
110

Thermal Properties

Latent Heat of Fusion, J/g 290
220
Maximum Temperature: Mechanical, °C 870
220
Melting Completion (Liquidus), °C 1430
1120
Melting Onset (Solidus), °C 1400
1060
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 16
59
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
11
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
12

Otherwise Unclassified Properties

Base Metal Price, % relative 16
34
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 3.2
3.4
Embodied Energy, MJ/kg 45
52
Embodied Water, L/kg 140
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190 to 230
100
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 310
51
Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 21 to 25
10
Strength to Weight: Bending, points 20 to 22
12
Thermal Diffusivity, mm2/s 4.1
17
Thermal Shock Resistance, points 13 to 15
12

Alloy Composition

Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 0
88.5 to 90.5
Iron (Fe), % 65.3 to 74
0 to 0.050
Manganese (Mn), % 0 to 2.0
0 to 0.5
Nickel (Ni), % 9.0 to 12
9.5 to 10.5
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0 to 0.7
0
Residuals, % 0
0 to 0.5