MakeItFrom.com
Menu (ESC)

AISI 321 Stainless Steel vs. R56406 Titanium

AISI 321 stainless steel belongs to the iron alloys classification, while R56406 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 321 stainless steel and the bottom bar is R56406 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34 to 50
9.1
Fatigue Strength, MPa 220 to 270
480
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
40
Tensile Strength: Ultimate (UTS), MPa 590 to 690
980
Tensile Strength: Yield (Proof), MPa 220 to 350
850

Thermal Properties

Latent Heat of Fusion, J/g 290
410
Maximum Temperature: Mechanical, °C 870
340
Melting Completion (Liquidus), °C 1430
1610
Melting Onset (Solidus), °C 1400
1560
Specific Heat Capacity, J/kg-K 480
560
Thermal Conductivity, W/m-K 16
7.1
Thermal Expansion, µm/m-K 17
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 16
36
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 3.2
38
Embodied Energy, MJ/kg 45
610
Embodied Water, L/kg 140
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190 to 230
85
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 310
3420
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 21 to 25
61
Strength to Weight: Bending, points 20 to 22
49
Thermal Diffusivity, mm2/s 4.1
2.8
Thermal Shock Resistance, points 13 to 15
69

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.8
Carbon (C), % 0 to 0.080
0 to 0.1
Chromium (Cr), % 17 to 19
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 65.3 to 74
0 to 0.3
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 9.0 to 12
0
Nitrogen (N), % 0 to 0.1
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0 to 0.7
88.1 to 91
Vanadium (V), % 0
3.5 to 4.5