MakeItFrom.com
Menu (ESC)

AISI 321H Stainless Steel vs. 6063 Aluminum

AISI 321H stainless steel belongs to the iron alloys classification, while 6063 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 321H stainless steel and the bottom bar is 6063 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
25 to 95
Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 40
7.3 to 21
Fatigue Strength, MPa 200
39 to 95
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 400
70 to 190
Tensile Strength: Ultimate (UTS), MPa 580
110 to 300
Tensile Strength: Yield (Proof), MPa 230
49 to 270

Thermal Properties

Latent Heat of Fusion, J/g 290
400
Maximum Temperature: Mechanical, °C 940
160
Melting Completion (Liquidus), °C 1430
650
Melting Onset (Solidus), °C 1380
620
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 15
190 to 220
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
49 to 58
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
160 to 190

Otherwise Unclassified Properties

Base Metal Price, % relative 16
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 3.2
8.3
Embodied Energy, MJ/kg 46
150
Embodied Water, L/kg 140
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
13 to 27
Resilience: Unit (Modulus of Resilience), kJ/m3 140
18 to 540
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 21
11 to 31
Strength to Weight: Bending, points 20
18 to 37
Thermal Diffusivity, mm2/s 4.0
79 to 89
Thermal Shock Resistance, points 12
4.8 to 13

Alloy Composition

Aluminum (Al), % 0
97.5 to 99.4
Carbon (C), % 0.040 to 0.1
0
Chromium (Cr), % 17 to 19
0 to 0.1
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 65.4 to 74
0 to 0.35
Magnesium (Mg), % 0
0.45 to 0.9
Manganese (Mn), % 0 to 2.0
0 to 0.1
Nickel (Ni), % 9.0 to 12
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0.2 to 0.6
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0 to 0.7
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15