MakeItFrom.com
Menu (ESC)

AISI 321H Stainless Steel vs. A535.0 Aluminum

AISI 321H stainless steel belongs to the iron alloys classification, while A535.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 321H stainless steel and the bottom bar is A535.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
67
Elongation at Break, % 40
9.0
Fatigue Strength, MPa 200
95
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
25
Tensile Strength: Ultimate (UTS), MPa 580
250
Tensile Strength: Yield (Proof), MPa 230
120

Thermal Properties

Latent Heat of Fusion, J/g 290
390
Maximum Temperature: Mechanical, °C 940
170
Melting Completion (Liquidus), °C 1430
620
Melting Onset (Solidus), °C 1380
550
Specific Heat Capacity, J/kg-K 480
910
Thermal Conductivity, W/m-K 15
100
Thermal Expansion, µm/m-K 17
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
23
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
79

Otherwise Unclassified Properties

Base Metal Price, % relative 16
9.5
Density, g/cm3 7.8
2.6
Embodied Carbon, kg CO2/kg material 3.2
9.3
Embodied Energy, MJ/kg 46
160
Embodied Water, L/kg 140
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
19
Resilience: Unit (Modulus of Resilience), kJ/m3 140
120
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 21
26
Strength to Weight: Bending, points 20
33
Thermal Diffusivity, mm2/s 4.0
42
Thermal Shock Resistance, points 12
11

Alloy Composition

Aluminum (Al), % 0
91.4 to 93.4
Carbon (C), % 0.040 to 0.1
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 65.4 to 74
0 to 0.2
Magnesium (Mg), % 0
6.5 to 7.5
Manganese (Mn), % 0 to 2.0
0.1 to 0.25
Nickel (Ni), % 9.0 to 12
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0 to 0.2
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0 to 0.7
0 to 0.25
Residuals, % 0
0 to 0.15