MakeItFrom.com
Menu (ESC)

AISI 321H Stainless Steel vs. ASTM A36 Carbon Steel

Both AISI 321H stainless steel and ASTM A36 carbon steel are iron alloys. They have 70% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 321H stainless steel and the bottom bar is ASTM A36 carbon steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
140
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 40
22
Fatigue Strength, MPa 200
200
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Shear Strength, MPa 400
300
Tensile Strength: Ultimate (UTS), MPa 580
480
Tensile Strength: Yield (Proof), MPa 230
290

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 940
400
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1380
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
50
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
12
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
14

Otherwise Unclassified Properties

Base Metal Price, % relative 16
1.8
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 3.2
1.4
Embodied Energy, MJ/kg 46
18
Embodied Water, L/kg 140
44

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
92
Resilience: Unit (Modulus of Resilience), kJ/m3 140
220
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 21
17
Strength to Weight: Bending, points 20
17
Thermal Diffusivity, mm2/s 4.0
14
Thermal Shock Resistance, points 12
16

Alloy Composition

Carbon (C), % 0.040 to 0.1
0 to 0.26
Chromium (Cr), % 17 to 19
0
Iron (Fe), % 65.4 to 74
99.25 to 100
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 9.0 to 12
0
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.75
0 to 0.4
Sulfur (S), % 0 to 0.030
0 to 0.050
Titanium (Ti), % 0 to 0.7
0