MakeItFrom.com
Menu (ESC)

AISI 321H Stainless Steel vs. AWS E318

Both AISI 321H stainless steel and AWS E318 are iron alloys. They have a moderately high 94% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is AISI 321H stainless steel and the bottom bar is AWS E318.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 40
29
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
78
Tensile Strength: Ultimate (UTS), MPa 580
620

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Melting Completion (Liquidus), °C 1430
1440
Melting Onset (Solidus), °C 1380
1400
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 17
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 16
23
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 3.2
4.4
Embodied Energy, MJ/kg 46
62
Embodied Water, L/kg 140
160

Common Calculations

PREN (Pitting Resistance) 18
27
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
22
Strength to Weight: Bending, points 20
20
Thermal Diffusivity, mm2/s 4.0
4.0
Thermal Shock Resistance, points 12
16

Alloy Composition

Carbon (C), % 0.040 to 0.1
0 to 0.080
Chromium (Cr), % 17 to 19
17 to 20
Copper (Cu), % 0
0 to 0.75
Iron (Fe), % 65.4 to 74
57.6 to 69.5
Manganese (Mn), % 0 to 2.0
0.5 to 2.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 9.0 to 12
11 to 14
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0 to 0.7
0