MakeItFrom.com
Menu (ESC)

AISI 321H Stainless Steel vs. EN 1.4542 Stainless Steel

Both AISI 321H stainless steel and EN 1.4542 stainless steel are iron alloys. They have a moderately high 91% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AISI 321H stainless steel and the bottom bar is EN 1.4542 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 40
5.7 to 20
Fatigue Strength, MPa 200
370 to 640
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
76
Shear Strength, MPa 400
550 to 860
Tensile Strength: Ultimate (UTS), MPa 580
880 to 1470
Tensile Strength: Yield (Proof), MPa 230
580 to 1300

Thermal Properties

Latent Heat of Fusion, J/g 290
280
Maximum Temperature: Corrosion, °C 480
440
Maximum Temperature: Mechanical, °C 940
860
Melting Completion (Liquidus), °C 1430
1430
Melting Onset (Solidus), °C 1380
1380
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
16
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 16
13
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.2
2.7
Embodied Energy, MJ/kg 46
39
Embodied Water, L/kg 140
130

Common Calculations

PREN (Pitting Resistance) 18
17
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
62 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 140
880 to 4360
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
31 to 52
Strength to Weight: Bending, points 20
26 to 37
Thermal Diffusivity, mm2/s 4.0
4.3
Thermal Shock Resistance, points 12
29 to 49

Alloy Composition

Carbon (C), % 0.040 to 0.1
0 to 0.070
Chromium (Cr), % 17 to 19
15 to 17
Copper (Cu), % 0
3.0 to 5.0
Iron (Fe), % 65.4 to 74
69.6 to 79
Manganese (Mn), % 0 to 2.0
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.6
Nickel (Ni), % 9.0 to 12
3.0 to 5.0
Niobium (Nb), % 0
0 to 0.45
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.75
0 to 0.7
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0 to 0.7
0