MakeItFrom.com
Menu (ESC)

AISI 321H Stainless Steel vs. S44625 Stainless Steel

Both AISI 321H stainless steel and S44625 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 88% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AISI 321H stainless steel and the bottom bar is S44625 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 40
22
Fatigue Strength, MPa 200
240
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 77
80
Shear Strength, MPa 400
370
Tensile Strength: Ultimate (UTS), MPa 580
590
Tensile Strength: Yield (Proof), MPa 230
360

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 480
450
Maximum Temperature: Mechanical, °C 940
1100
Melting Completion (Liquidus), °C 1430
1440
Melting Onset (Solidus), °C 1380
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
17
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 16
14
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 3.2
2.8
Embodied Energy, MJ/kg 46
39
Embodied Water, L/kg 140
160

Common Calculations

PREN (Pitting Resistance) 18
30
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
110
Resilience: Unit (Modulus of Resilience), kJ/m3 140
310
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
21
Strength to Weight: Bending, points 20
20
Thermal Diffusivity, mm2/s 4.0
4.6
Thermal Shock Resistance, points 12
19

Alloy Composition

Carbon (C), % 0.040 to 0.1
0 to 0.010
Chromium (Cr), % 17 to 19
25 to 27.5
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 65.4 to 74
69.4 to 74.3
Manganese (Mn), % 0 to 2.0
0 to 0.4
Molybdenum (Mo), % 0
0.75 to 1.5
Nickel (Ni), % 9.0 to 12
0 to 0.5
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0 to 0.045
0 to 0.020
Silicon (Si), % 0 to 0.75
0 to 0.4
Sulfur (S), % 0 to 0.030
0 to 0.020
Titanium (Ti), % 0 to 0.7
0