MakeItFrom.com
Menu (ESC)

AISI 329 Stainless Steel vs. 8176 Aluminum

AISI 329 stainless steel belongs to the iron alloys classification, while 8176 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 329 stainless steel and the bottom bar is 8176 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 17
15
Fatigue Strength, MPa 330
59
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 80
26
Shear Strength, MPa 440
70
Tensile Strength: Ultimate (UTS), MPa 710
160
Tensile Strength: Yield (Proof), MPa 540
95

Thermal Properties

Latent Heat of Fusion, J/g 300
400
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1440
660
Melting Onset (Solidus), °C 1390
650
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 16
230
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
61
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
200

Otherwise Unclassified Properties

Base Metal Price, % relative 16
9.5
Density, g/cm3 7.7
2.7
Embodied Carbon, kg CO2/kg material 3.1
8.2
Embodied Energy, MJ/kg 44
150
Embodied Water, L/kg 170
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
21
Resilience: Unit (Modulus of Resilience), kJ/m3 730
66
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 25
16
Strength to Weight: Bending, points 23
24
Thermal Diffusivity, mm2/s 4.3
93
Thermal Shock Resistance, points 19
7.0

Alloy Composition

Aluminum (Al), % 0
98.6 to 99.6
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 23 to 28
0
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 63.1 to 74
0.4 to 1.0
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 1.0 to 2.0
0
Nickel (Ni), % 2.0 to 5.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.75
0.030 to 0.15
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15