MakeItFrom.com
Menu (ESC)

AISI 329 Stainless Steel vs. Nickel 80A

AISI 329 stainless steel belongs to the iron alloys classification, while nickel 80A belongs to the nickel alloys. They have a modest 25% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 329 stainless steel and the bottom bar is nickel 80A.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 17
22
Fatigue Strength, MPa 330
430
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 80
74
Shear Strength, MPa 440
660
Tensile Strength: Ultimate (UTS), MPa 710
1040
Tensile Strength: Yield (Proof), MPa 540
710

Thermal Properties

Latent Heat of Fusion, J/g 300
320
Maximum Temperature: Mechanical, °C 1100
980
Melting Completion (Liquidus), °C 1440
1360
Melting Onset (Solidus), °C 1390
1310
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 16
11
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 16
55
Density, g/cm3 7.7
8.3
Embodied Carbon, kg CO2/kg material 3.1
9.8
Embodied Energy, MJ/kg 44
140
Embodied Water, L/kg 170
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
210
Resilience: Unit (Modulus of Resilience), kJ/m3 730
1300
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 25
35
Strength to Weight: Bending, points 23
27
Thermal Diffusivity, mm2/s 4.3
2.9
Thermal Shock Resistance, points 19
31

Alloy Composition

Aluminum (Al), % 0
0.5 to 1.8
Carbon (C), % 0 to 0.080
0 to 0.1
Chromium (Cr), % 23 to 28
18 to 21
Iron (Fe), % 63.1 to 74
0 to 3.0
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 1.0 to 2.0
0
Nickel (Ni), % 2.0 to 5.0
69.4 to 79.7
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0
1.8 to 2.7