MakeItFrom.com
Menu (ESC)

AISI 329 Stainless Steel vs. S32760 Stainless Steel

Both AISI 329 stainless steel and S32760 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a moderately high 93% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is AISI 329 stainless steel and the bottom bar is S32760 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 240
250
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 17
28
Fatigue Strength, MPa 330
450
Poisson's Ratio 0.27
0.27
Rockwell C Hardness 24
24
Shear Modulus, GPa 80
80
Shear Strength, MPa 440
550
Tensile Strength: Ultimate (UTS), MPa 710
850
Tensile Strength: Yield (Proof), MPa 540
620

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Maximum Temperature: Corrosion, °C 450
450
Maximum Temperature: Mechanical, °C 1100
1100
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1390
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 16
15
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 16
22
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 3.1
4.1
Embodied Energy, MJ/kg 44
57
Embodied Water, L/kg 170
180

Common Calculations

PREN (Pitting Resistance) 30
42
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
220
Resilience: Unit (Modulus of Resilience), kJ/m3 730
930
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 25
30
Strength to Weight: Bending, points 23
25
Thermal Diffusivity, mm2/s 4.3
4.0
Thermal Shock Resistance, points 19
23

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 23 to 28
24 to 26
Copper (Cu), % 0
0.5 to 1.0
Iron (Fe), % 63.1 to 74
57.6 to 65.8
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 1.0 to 2.0
3.0 to 4.0
Nickel (Ni), % 2.0 to 5.0
6.0 to 8.0
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.010
Tungsten (W), % 0
0.5 to 1.0