MakeItFrom.com
Menu (ESC)

AISI 334 Stainless Steel vs. 328.0 Aluminum

AISI 334 stainless steel belongs to the iron alloys classification, while 328.0 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 334 stainless steel and the bottom bar is 328.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
60 to 82
Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 34
1.6 to 2.1
Fatigue Strength, MPa 150
55 to 80
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
27
Tensile Strength: Ultimate (UTS), MPa 540
200 to 270
Tensile Strength: Yield (Proof), MPa 190
120 to 170

Thermal Properties

Latent Heat of Fusion, J/g 290
510
Maximum Temperature: Mechanical, °C 1000
180
Melting Completion (Liquidus), °C 1410
620
Melting Onset (Solidus), °C 1370
560
Specific Heat Capacity, J/kg-K 480
890
Thermal Expansion, µm/m-K 16
22

Otherwise Unclassified Properties

Base Metal Price, % relative 22
10
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 4.1
7.8
Embodied Energy, MJ/kg 59
140
Embodied Water, L/kg 170
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
2.8 to 5.0
Resilience: Unit (Modulus of Resilience), kJ/m3 96
92 to 200
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 19
21 to 28
Strength to Weight: Bending, points 19
28 to 34
Thermal Shock Resistance, points 12
9.2 to 12

Alloy Composition

Aluminum (Al), % 0.15 to 0.6
84.5 to 91.1
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 18 to 20
0 to 0.35
Copper (Cu), % 0
1.0 to 2.0
Iron (Fe), % 55.7 to 62.7
0 to 1.0
Magnesium (Mg), % 0
0.2 to 0.6
Manganese (Mn), % 0 to 1.0
0.2 to 0.6
Nickel (Ni), % 19 to 21
0 to 0.25
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
7.5 to 8.5
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0.15 to 0.6
0 to 0.25
Zinc (Zn), % 0
0 to 1.5
Residuals, % 0
0 to 0.5