MakeItFrom.com
Menu (ESC)

AISI 334 Stainless Steel vs. CC762S Brass

AISI 334 stainless steel belongs to the iron alloys classification, while CC762S brass belongs to the copper alloys. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is AISI 334 stainless steel and the bottom bar is CC762S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
210
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
7.3
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
43
Tensile Strength: Ultimate (UTS), MPa 540
840
Tensile Strength: Yield (Proof), MPa 190
540

Thermal Properties

Latent Heat of Fusion, J/g 290
200
Maximum Temperature: Mechanical, °C 1000
160
Melting Completion (Liquidus), °C 1410
920
Melting Onset (Solidus), °C 1370
870
Specific Heat Capacity, J/kg-K 480
420
Thermal Expansion, µm/m-K 16
20

Otherwise Unclassified Properties

Base Metal Price, % relative 22
24
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 4.1
3.1
Embodied Energy, MJ/kg 59
51
Embodied Water, L/kg 170
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
54
Resilience: Unit (Modulus of Resilience), kJ/m3 96
1290
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 19
29
Strength to Weight: Bending, points 19
25
Thermal Shock Resistance, points 12
27

Alloy Composition

Aluminum (Al), % 0.15 to 0.6
3.0 to 7.0
Antimony (Sb), % 0
0 to 0.030
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 18 to 20
0
Copper (Cu), % 0
57 to 67
Iron (Fe), % 55.7 to 62.7
1.5 to 4.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 1.0
2.5 to 5.0
Nickel (Ni), % 19 to 21
0 to 3.0
Phosphorus (P), % 0 to 0.030
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.2
Titanium (Ti), % 0.15 to 0.6
0
Zinc (Zn), % 0
13.4 to 36