MakeItFrom.com
Menu (ESC)

AISI 334 Stainless Steel vs. EN-MC95310 Magnesium

AISI 334 stainless steel belongs to the iron alloys classification, while EN-MC95310 magnesium belongs to the magnesium alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 334 stainless steel and the bottom bar is EN-MC95310 magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
85
Elastic (Young's, Tensile) Modulus, GPa 200
45
Elongation at Break, % 34
2.2
Fatigue Strength, MPa 150
110
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
17
Shear Strength, MPa 360
160
Tensile Strength: Ultimate (UTS), MPa 540
280
Tensile Strength: Yield (Proof), MPa 190
190

Thermal Properties

Latent Heat of Fusion, J/g 290
330
Maximum Temperature: Mechanical, °C 1000
170
Melting Completion (Liquidus), °C 1410
650
Melting Onset (Solidus), °C 1370
540
Specific Heat Capacity, J/kg-K 480
960
Thermal Expansion, µm/m-K 16
25

Otherwise Unclassified Properties

Base Metal Price, % relative 22
34
Density, g/cm3 7.9
1.9
Embodied Carbon, kg CO2/kg material 4.1
29
Embodied Energy, MJ/kg 59
260
Embodied Water, L/kg 170
900

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
5.6
Resilience: Unit (Modulus of Resilience), kJ/m3 96
420
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
61
Strength to Weight: Axial, points 19
40
Strength to Weight: Bending, points 19
49
Thermal Shock Resistance, points 12
18

Alloy Composition

Aluminum (Al), % 0.15 to 0.6
0
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 18 to 20
0
Copper (Cu), % 0
0 to 0.030
Iron (Fe), % 55.7 to 62.7
0 to 0.010
Lithium (Li), % 0
0 to 0.2
Magnesium (Mg), % 0
88.9 to 93.4
Manganese (Mn), % 0 to 1.0
0 to 0.15
Nickel (Ni), % 19 to 21
0 to 0.0050
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0 to 0.010
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0.15 to 0.6
0
Unspecified Rare Earths, % 0
1.5 to 4.0
Yttrium (Y), % 0
4.8 to 5.5
Zinc (Zn), % 0
0 to 0.2
Zirconium (Zr), % 0
0.4 to 1.0
Residuals, % 0
0 to 0.010