MakeItFrom.com
Menu (ESC)

AISI 334 Stainless Steel vs. Grade 12 Titanium

AISI 334 stainless steel belongs to the iron alloys classification, while grade 12 titanium belongs to the titanium alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is AISI 334 stainless steel and the bottom bar is grade 12 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
170
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
21
Fatigue Strength, MPa 150
280
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
39
Shear Strength, MPa 360
330
Tensile Strength: Ultimate (UTS), MPa 540
530
Tensile Strength: Yield (Proof), MPa 190
410

Thermal Properties

Latent Heat of Fusion, J/g 290
420
Maximum Temperature: Mechanical, °C 1000
320
Melting Completion (Liquidus), °C 1410
1660
Melting Onset (Solidus), °C 1370
1610
Specific Heat Capacity, J/kg-K 480
540
Thermal Expansion, µm/m-K 16
9.6

Otherwise Unclassified Properties

Base Metal Price, % relative 22
37
Density, g/cm3 7.9
4.5
Embodied Carbon, kg CO2/kg material 4.1
31
Embodied Energy, MJ/kg 59
500
Embodied Water, L/kg 170
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
110
Resilience: Unit (Modulus of Resilience), kJ/m3 96
770
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 19
32
Strength to Weight: Bending, points 19
32
Thermal Shock Resistance, points 12
37

Alloy Composition

Aluminum (Al), % 0.15 to 0.6
0
Carbon (C), % 0 to 0.080
0 to 0.080
Chromium (Cr), % 18 to 20
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 55.7 to 62.7
0 to 0.3
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0
0.2 to 0.4
Nickel (Ni), % 19 to 21
0.6 to 0.9
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0.15 to 0.6
97.6 to 99.2
Residuals, % 0
0 to 0.4