MakeItFrom.com
Menu (ESC)

AISI 334 Stainless Steel vs. Grade 4 Titanium

AISI 334 stainless steel belongs to the iron alloys classification, while grade 4 titanium belongs to the titanium alloys. There are 27 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is AISI 334 stainless steel and the bottom bar is grade 4 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
200
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
17
Fatigue Strength, MPa 150
340
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
41
Shear Strength, MPa 360
390
Tensile Strength: Ultimate (UTS), MPa 540
640
Tensile Strength: Yield (Proof), MPa 190
530

Thermal Properties

Latent Heat of Fusion, J/g 290
420
Maximum Temperature: Mechanical, °C 1000
320
Melting Completion (Liquidus), °C 1410
1660
Melting Onset (Solidus), °C 1370
1610
Specific Heat Capacity, J/kg-K 480
540
Thermal Expansion, µm/m-K 16
9.4

Otherwise Unclassified Properties

Base Metal Price, % relative 22
37
Density, g/cm3 7.9
4.5
Embodied Carbon, kg CO2/kg material 4.1
31
Embodied Energy, MJ/kg 59
500
Embodied Water, L/kg 170
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
100
Resilience: Unit (Modulus of Resilience), kJ/m3 96
1330
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 19
40
Strength to Weight: Bending, points 19
37
Thermal Shock Resistance, points 12
46

Alloy Composition

Aluminum (Al), % 0.15 to 0.6
0
Carbon (C), % 0 to 0.080
0 to 0.080
Chromium (Cr), % 18 to 20
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 55.7 to 62.7
0 to 0.5
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 19 to 21
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.4
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0.15 to 0.6
98.6 to 100
Residuals, % 0
0 to 0.4