MakeItFrom.com
Menu (ESC)

AISI 334 Stainless Steel vs. C91300 Bell Metal

AISI 334 stainless steel belongs to the iron alloys classification, while C91300 bell metal belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is AISI 334 stainless steel and the bottom bar is C91300 bell metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 34
0.5
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
38
Tensile Strength: Ultimate (UTS), MPa 540
240
Tensile Strength: Yield (Proof), MPa 190
210

Thermal Properties

Latent Heat of Fusion, J/g 290
180
Maximum Temperature: Mechanical, °C 1000
150
Melting Completion (Liquidus), °C 1410
890
Melting Onset (Solidus), °C 1370
820
Specific Heat Capacity, J/kg-K 480
360
Thermal Expansion, µm/m-K 16
18

Otherwise Unclassified Properties

Base Metal Price, % relative 22
39
Density, g/cm3 7.9
8.6
Embodied Carbon, kg CO2/kg material 4.1
4.5
Embodied Energy, MJ/kg 59
74
Embodied Water, L/kg 170
460

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
1.1
Resilience: Unit (Modulus of Resilience), kJ/m3 96
210
Stiffness to Weight: Axial, points 14
6.6
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 19
7.8
Strength to Weight: Bending, points 19
10
Thermal Shock Resistance, points 12
9.3

Alloy Composition

Aluminum (Al), % 0.15 to 0.6
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 18 to 20
0
Copper (Cu), % 0
79 to 82
Iron (Fe), % 55.7 to 62.7
0 to 0.25
Lead (Pb), % 0
0 to 0.25
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 19 to 21
0 to 0.5
Phosphorus (P), % 0 to 0.030
0 to 1.5
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.015
0 to 0.050
Tin (Sn), % 0
18 to 20
Titanium (Ti), % 0.15 to 0.6
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.6