MakeItFrom.com
Menu (ESC)

AISI 347 Stainless Steel vs. 5052 Aluminum

AISI 347 stainless steel belongs to the iron alloys classification, while 5052 aluminum belongs to the aluminum alloys. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 347 stainless steel and the bottom bar is 5052 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160 to 210
46 to 83
Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 34 to 46
1.1 to 22
Fatigue Strength, MPa 220 to 270
66 to 140
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 430 to 460
120 to 180
Tensile Strength: Ultimate (UTS), MPa 610 to 690
190 to 320
Tensile Strength: Yield (Proof), MPa 240 to 350
75 to 280

Thermal Properties

Latent Heat of Fusion, J/g 290
400
Maximum Temperature: Mechanical, °C 870
190
Melting Completion (Liquidus), °C 1430
650
Melting Onset (Solidus), °C 1400
610
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 16
140
Thermal Expansion, µm/m-K 17
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
35
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
120

Otherwise Unclassified Properties

Base Metal Price, % relative 19
9.5
Calomel Potential, mV -80
-760
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 3.6
8.6
Embodied Energy, MJ/kg 52
150
Embodied Water, L/kg 150
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190 to 220
1.7 to 69
Resilience: Unit (Modulus of Resilience), kJ/m3 150 to 310
41 to 590
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 22 to 25
19 to 33
Strength to Weight: Bending, points 20 to 22
27 to 38
Thermal Diffusivity, mm2/s 4.3
57
Thermal Shock Resistance, points 13 to 15
8.3 to 14

Alloy Composition

Aluminum (Al), % 0
95.8 to 97.7
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 17 to 19
0.15 to 0.35
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 64.1 to 74
0 to 0.4
Magnesium (Mg), % 0
2.2 to 2.8
Manganese (Mn), % 0 to 2.0
0 to 0.1
Nickel (Ni), % 9.0 to 13
0
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0 to 0.25
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15