AISI 347 Stainless Steel vs. EN 1.4371 Stainless Steel
Both AISI 347 stainless steel and EN 1.4371 stainless steel are iron alloys. They have a moderately high 92% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.
For each property being compared, the top bar is AISI 347 stainless steel and the bottom bar is EN 1.4371 stainless steel.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 160 to 210 | |
220 to 230 |
Elastic (Young's, Tensile) Modulus, GPa | 200 | |
200 |
Elongation at Break, % | 34 to 46 | |
45 to 51 |
Fatigue Strength, MPa | 220 to 270 | |
290 to 340 |
Poisson's Ratio | 0.28 | |
0.28 |
Shear Modulus, GPa | 77 | |
77 |
Shear Strength, MPa | 430 to 460 | |
520 to 540 |
Tensile Strength: Ultimate (UTS), MPa | 610 to 690 | |
740 to 750 |
Tensile Strength: Yield (Proof), MPa | 240 to 350 | |
320 to 340 |
Thermal Properties
Latent Heat of Fusion, J/g | 290 | |
280 |
Maximum Temperature: Corrosion, °C | 480 | |
410 |
Maximum Temperature: Mechanical, °C | 870 | |
880 |
Melting Completion (Liquidus), °C | 1430 | |
1410 |
Melting Onset (Solidus), °C | 1400 | |
1370 |
Specific Heat Capacity, J/kg-K | 480 | |
480 |
Thermal Conductivity, W/m-K | 16 | |
15 |
Thermal Expansion, µm/m-K | 17 | |
17 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 2.4 | |
2.5 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 2.7 | |
2.9 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 19 | |
12 |
Density, g/cm3 | 7.8 | |
7.7 |
Embodied Carbon, kg CO2/kg material | 3.6 | |
2.6 |
Embodied Energy, MJ/kg | 52 | |
38 |
Embodied Water, L/kg | 150 | |
140 |
Common Calculations
PREN (Pitting Resistance) | 18 | |
20 |
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 190 to 220 | |
270 to 310 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 150 to 310 | |
250 to 300 |
Stiffness to Weight: Axial, points | 14 | |
14 |
Stiffness to Weight: Bending, points | 25 | |
25 |
Strength to Weight: Axial, points | 22 to 25 | |
27 |
Strength to Weight: Bending, points | 20 to 22 | |
24 |
Thermal Diffusivity, mm2/s | 4.3 | |
4.0 |
Thermal Shock Resistance, points | 13 to 15 | |
16 |
Alloy Composition
Carbon (C), % | 0 to 0.080 | |
0 to 0.030 |
Chromium (Cr), % | 17 to 19 | |
16 to 17.5 |
Copper (Cu), % | 0 | |
0 to 1.0 |
Iron (Fe), % | 64.1 to 74 | |
66.7 to 74.4 |
Manganese (Mn), % | 0 to 2.0 | |
6.0 to 8.0 |
Nickel (Ni), % | 9.0 to 13 | |
3.5 to 5.5 |
Niobium (Nb), % | 0 to 1.0 | |
0 |
Nitrogen (N), % | 0 | |
0.15 to 0.25 |
Phosphorus (P), % | 0 to 0.045 | |
0 to 0.045 |
Silicon (Si), % | 0 to 0.75 | |
0 to 1.0 |
Sulfur (S), % | 0 to 0.030 | |
0 to 0.015 |