MakeItFrom.com
Menu (ESC)

AISI 347 Stainless Steel vs. EN 1.8945 Steel

Both AISI 347 stainless steel and EN 1.8945 steel are iron alloys. They have 71% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 347 stainless steel and the bottom bar is EN 1.8945 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160 to 210
170
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 34 to 46
16
Fatigue Strength, MPa 220 to 270
260
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Shear Strength, MPa 430 to 460
350
Tensile Strength: Ultimate (UTS), MPa 610 to 690
580
Tensile Strength: Yield (Proof), MPa 240 to 350
390

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 870
420
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 16
42
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 19
2.5
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.6
1.5
Embodied Energy, MJ/kg 52
19
Embodied Water, L/kg 150
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190 to 220
82
Resilience: Unit (Modulus of Resilience), kJ/m3 150 to 310
410
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 22 to 25
20
Strength to Weight: Bending, points 20 to 22
20
Thermal Diffusivity, mm2/s 4.3
11
Thermal Shock Resistance, points 13 to 15
17

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.15
Chromium (Cr), % 17 to 19
0.25 to 1.4
Copper (Cu), % 0
0.2 to 0.6
Iron (Fe), % 64.1 to 74
95.1 to 99.5
Manganese (Mn), % 0 to 2.0
0 to 1.1
Nickel (Ni), % 9.0 to 13
0 to 0.7
Niobium (Nb), % 0 to 1.0
0
Nitrogen (N), % 0
0 to 0.010
Phosphorus (P), % 0 to 0.045
0.050 to 0.16
Silicon (Si), % 0 to 0.75
0 to 0.8
Sulfur (S), % 0 to 0.030
0 to 0.040