MakeItFrom.com
Menu (ESC)

AISI 347 Stainless Steel vs. CC334G Bronze

AISI 347 stainless steel belongs to the iron alloys classification, while CC334G bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 347 stainless steel and the bottom bar is CC334G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160 to 210
210
Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 34 to 46
5.6
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
45
Tensile Strength: Ultimate (UTS), MPa 610 to 690
810
Tensile Strength: Yield (Proof), MPa 240 to 350
410

Thermal Properties

Latent Heat of Fusion, J/g 290
240
Maximum Temperature: Mechanical, °C 870
240
Melting Completion (Liquidus), °C 1430
1080
Melting Onset (Solidus), °C 1400
1020
Specific Heat Capacity, J/kg-K 480
450
Thermal Conductivity, W/m-K 16
41
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 19
29
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 3.6
3.6
Embodied Energy, MJ/kg 52
59
Embodied Water, L/kg 150
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190 to 220
38
Resilience: Unit (Modulus of Resilience), kJ/m3 150 to 310
710
Stiffness to Weight: Axial, points 14
8.1
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 22 to 25
28
Strength to Weight: Bending, points 20 to 22
24
Thermal Diffusivity, mm2/s 4.3
11
Thermal Shock Resistance, points 13 to 15
28

Alloy Composition

Aluminum (Al), % 0
10 to 12
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 0
72 to 84.5
Iron (Fe), % 64.1 to 74
3.0 to 7.0
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0 to 2.0
0 to 2.5
Nickel (Ni), % 9.0 to 13
4.0 to 7.5
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.5