MakeItFrom.com
Menu (ESC)

AISI 347 Stainless Steel vs. Grade 28 Titanium

AISI 347 stainless steel belongs to the iron alloys classification, while grade 28 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 347 stainless steel and the bottom bar is grade 28 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34 to 46
11 to 17
Fatigue Strength, MPa 220 to 270
330 to 480
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
40
Shear Strength, MPa 430 to 460
420 to 590
Tensile Strength: Ultimate (UTS), MPa 610 to 690
690 to 980
Tensile Strength: Yield (Proof), MPa 240 to 350
540 to 810

Thermal Properties

Latent Heat of Fusion, J/g 290
410
Maximum Temperature: Mechanical, °C 870
330
Melting Completion (Liquidus), °C 1430
1640
Melting Onset (Solidus), °C 1400
1590
Specific Heat Capacity, J/kg-K 480
550
Thermal Conductivity, W/m-K 16
8.3
Thermal Expansion, µm/m-K 17
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 19
36
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 3.6
37
Embodied Energy, MJ/kg 52
600
Embodied Water, L/kg 150
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190 to 220
87 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 150 to 310
1370 to 3100
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 22 to 25
43 to 61
Strength to Weight: Bending, points 20 to 22
39 to 49
Thermal Diffusivity, mm2/s 4.3
3.4
Thermal Shock Resistance, points 13 to 15
47 to 66

Alloy Composition

Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0 to 0.080
0 to 0.080
Chromium (Cr), % 17 to 19
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 64.1 to 74
0 to 0.25
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 9.0 to 13
0
Niobium (Nb), % 0 to 1.0
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Phosphorus (P), % 0 to 0.045
0
Ruthenium (Ru), % 0
0.080 to 0.14
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
92.4 to 95.4
Vanadium (V), % 0
2.0 to 3.0
Residuals, % 0
0 to 0.4