MakeItFrom.com
Menu (ESC)

AISI 347 Stainless Steel vs. C36500 Muntz Metal

AISI 347 stainless steel belongs to the iron alloys classification, while C36500 Muntz Metal belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 347 stainless steel and the bottom bar is C36500 Muntz Metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 34 to 46
40
Poisson's Ratio 0.28
0.3
Shear Modulus, GPa 77
39
Shear Strength, MPa 430 to 460
270
Tensile Strength: Ultimate (UTS), MPa 610 to 690
400
Tensile Strength: Yield (Proof), MPa 240 to 350
160

Thermal Properties

Latent Heat of Fusion, J/g 290
170
Maximum Temperature: Mechanical, °C 870
120
Melting Completion (Liquidus), °C 1430
900
Melting Onset (Solidus), °C 1400
890
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 16
120
Thermal Expansion, µm/m-K 17
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
28
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
32

Otherwise Unclassified Properties

Base Metal Price, % relative 19
23
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 3.6
2.7
Embodied Energy, MJ/kg 52
46
Embodied Water, L/kg 150
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190 to 220
130
Resilience: Unit (Modulus of Resilience), kJ/m3 150 to 310
120
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 22 to 25
14
Strength to Weight: Bending, points 20 to 22
15
Thermal Diffusivity, mm2/s 4.3
40
Thermal Shock Resistance, points 13 to 15
13

Alloy Composition

Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 0
58 to 61
Iron (Fe), % 64.1 to 74
0 to 0.15
Lead (Pb), % 0
0.25 to 0.7
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 9.0 to 13
0
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.25
Zinc (Zn), % 0
37.5 to 41.8
Residuals, % 0
0 to 0.4