MakeItFrom.com
Menu (ESC)

AISI 347 Stainless Steel vs. C41300 Brass

AISI 347 stainless steel belongs to the iron alloys classification, while C41300 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AISI 347 stainless steel and the bottom bar is C41300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34 to 46
2.0 to 44
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
42
Shear Strength, MPa 430 to 460
230 to 370
Tensile Strength: Ultimate (UTS), MPa 610 to 690
300 to 630
Tensile Strength: Yield (Proof), MPa 240 to 350
120 to 570

Thermal Properties

Latent Heat of Fusion, J/g 290
200
Maximum Temperature: Mechanical, °C 870
180
Melting Completion (Liquidus), °C 1430
1040
Melting Onset (Solidus), °C 1400
1010
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 16
130
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
30
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
31

Otherwise Unclassified Properties

Base Metal Price, % relative 19
29
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 3.6
2.7
Embodied Energy, MJ/kg 52
44
Embodied Water, L/kg 150
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190 to 220
11 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 150 to 310
69 to 1440
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 22 to 25
9.6 to 20
Strength to Weight: Bending, points 20 to 22
11 to 19
Thermal Diffusivity, mm2/s 4.3
40
Thermal Shock Resistance, points 13 to 15
11 to 22

Alloy Composition

Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 0
89 to 93
Iron (Fe), % 64.1 to 74
0 to 0.050
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 9.0 to 13
0
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.7 to 1.3
Zinc (Zn), % 0
5.1 to 10.3
Residuals, % 0
0 to 0.5