MakeItFrom.com
Menu (ESC)

AISI 347 Stainless Steel vs. C64210 Bronze

AISI 347 stainless steel belongs to the iron alloys classification, while C64210 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 347 stainless steel and the bottom bar is C64210 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34 to 46
35
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
42
Shear Strength, MPa 430 to 460
380
Tensile Strength: Ultimate (UTS), MPa 610 to 690
570
Tensile Strength: Yield (Proof), MPa 240 to 350
290

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 870
210
Melting Completion (Liquidus), °C 1430
1040
Melting Onset (Solidus), °C 1400
990
Specific Heat Capacity, J/kg-K 480
430
Thermal Conductivity, W/m-K 16
48
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
13
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
14

Otherwise Unclassified Properties

Base Metal Price, % relative 19
29
Density, g/cm3 7.8
8.4
Embodied Carbon, kg CO2/kg material 3.6
3.0
Embodied Energy, MJ/kg 52
49
Embodied Water, L/kg 150
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190 to 220
170
Resilience: Unit (Modulus of Resilience), kJ/m3 150 to 310
360
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 22 to 25
19
Strength to Weight: Bending, points 20 to 22
18
Thermal Diffusivity, mm2/s 4.3
13
Thermal Shock Resistance, points 13 to 15
21

Alloy Composition

Aluminum (Al), % 0
6.3 to 7.0
Arsenic (As), % 0
0 to 0.15
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 0
89 to 92.2
Iron (Fe), % 64.1 to 74
0 to 0.3
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 2.0
0 to 0.1
Nickel (Ni), % 9.0 to 13
0 to 0.25
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
1.5 to 2.0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5