MakeItFrom.com
Menu (ESC)

AISI 347H Stainless Steel vs. C99500 Copper

AISI 347H stainless steel belongs to the iron alloys classification, while C99500 copper belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is AISI 347H stainless steel and the bottom bar is C99500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 39
13
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
45
Tensile Strength: Ultimate (UTS), MPa 580
540
Tensile Strength: Yield (Proof), MPa 230
310

Thermal Properties

Latent Heat of Fusion, J/g 290
240
Maximum Temperature: Mechanical, °C 940
210
Melting Completion (Liquidus), °C 1430
1090
Melting Onset (Solidus), °C 1390
1040
Specific Heat Capacity, J/kg-K 480
400
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
10
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
10

Otherwise Unclassified Properties

Base Metal Price, % relative 19
30
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 3.6
3.0
Embodied Energy, MJ/kg 52
47
Embodied Water, L/kg 150
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
63
Resilience: Unit (Modulus of Resilience), kJ/m3 140
410
Stiffness to Weight: Axial, points 14
7.7
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 21
17
Strength to Weight: Bending, points 20
17
Thermal Shock Resistance, points 13
19

Alloy Composition

Aluminum (Al), % 0
0.5 to 2.0
Carbon (C), % 0.040 to 0.1
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 0
82.5 to 92
Iron (Fe), % 64.1 to 74
3.0 to 5.0
Lead (Pb), % 0
0 to 0.25
Manganese (Mn), % 0 to 2.0
0 to 0.5
Nickel (Ni), % 9.0 to 13
3.5 to 5.5
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0.5 to 2.0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
0.5 to 2.0
Residuals, % 0
0 to 0.3