MakeItFrom.com
Menu (ESC)

AISI 347LN Stainless Steel vs. EN 1.4516 Stainless Steel

Both AISI 347LN stainless steel and EN 1.4516 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 83% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AISI 347LN stainless steel and the bottom bar is EN 1.4516 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 40
23
Fatigue Strength, MPa 200
210
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
76
Shear Strength, MPa 400
350
Tensile Strength: Ultimate (UTS), MPa 590
550
Tensile Strength: Yield (Proof), MPa 230
320

Thermal Properties

Latent Heat of Fusion, J/g 290
270
Maximum Temperature: Corrosion, °C 460
420
Maximum Temperature: Mechanical, °C 940
720
Melting Completion (Liquidus), °C 1430
1450
Melting Onset (Solidus), °C 1380
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
30
Thermal Expansion, µm/m-K 16
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 18
7.0
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.5
2.0
Embodied Energy, MJ/kg 49
28
Embodied Water, L/kg 150
97

Common Calculations

PREN (Pitting Resistance) 19
12
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
110
Resilience: Unit (Modulus of Resilience), kJ/m3 130
260
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
20
Strength to Weight: Bending, points 20
19
Thermal Diffusivity, mm2/s 4.1
8.1
Thermal Shock Resistance, points 13
20

Alloy Composition

Carbon (C), % 0.0050 to 0.020
0 to 0.080
Chromium (Cr), % 17 to 19
10.5 to 12.5
Iron (Fe), % 64.3 to 73.7
83.3 to 89
Manganese (Mn), % 0 to 2.0
0 to 1.5
Nickel (Ni), % 9.0 to 13
0.5 to 1.5
Niobium (Nb), % 0.2 to 0.5
0
Nitrogen (N), % 0.060 to 0.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 0.7
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0
0.050 to 0.35