MakeItFrom.com
Menu (ESC)

AISI 347LN Stainless Steel vs. C67500 Bronze

AISI 347LN stainless steel belongs to the iron alloys classification, while C67500 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 347LN stainless steel and the bottom bar is C67500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 40
14 to 33
Poisson's Ratio 0.28
0.3
Shear Modulus, GPa 77
40
Shear Strength, MPa 400
270 to 350
Tensile Strength: Ultimate (UTS), MPa 590
430 to 580
Tensile Strength: Yield (Proof), MPa 230
170 to 370

Thermal Properties

Latent Heat of Fusion, J/g 290
170
Maximum Temperature: Mechanical, °C 940
120
Melting Completion (Liquidus), °C 1430
890
Melting Onset (Solidus), °C 1380
870
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 15
110
Thermal Expansion, µm/m-K 16
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
24
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
27

Otherwise Unclassified Properties

Base Metal Price, % relative 18
23
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 3.5
2.8
Embodied Energy, MJ/kg 49
47
Embodied Water, L/kg 150
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
61 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 130
130 to 650
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 21
15 to 20
Strength to Weight: Bending, points 20
16 to 19
Thermal Diffusivity, mm2/s 4.1
34
Thermal Shock Resistance, points 13
14 to 19

Alloy Composition

Aluminum (Al), % 0
0 to 0.25
Carbon (C), % 0.0050 to 0.020
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 0
57 to 60
Iron (Fe), % 64.3 to 73.7
0.8 to 2.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 2.0
0.050 to 0.5
Nickel (Ni), % 9.0 to 13
0
Niobium (Nb), % 0.2 to 0.5
0
Nitrogen (N), % 0.060 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.5 to 1.5
Zinc (Zn), % 0
35.1 to 41.7
Residuals, % 0
0 to 0.5