MakeItFrom.com
Menu (ESC)

AISI 347LN Stainless Steel vs. C86200 Bronze

AISI 347LN stainless steel belongs to the iron alloys classification, while C86200 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AISI 347LN stainless steel and the bottom bar is C86200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 40
21
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
42
Tensile Strength: Ultimate (UTS), MPa 590
710
Tensile Strength: Yield (Proof), MPa 230
350

Thermal Properties

Latent Heat of Fusion, J/g 290
190
Maximum Temperature: Mechanical, °C 940
160
Melting Completion (Liquidus), °C 1430
940
Melting Onset (Solidus), °C 1380
900
Specific Heat Capacity, J/kg-K 480
410
Thermal Conductivity, W/m-K 15
35
Thermal Expansion, µm/m-K 16
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
9.0

Otherwise Unclassified Properties

Base Metal Price, % relative 18
23
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 3.5
2.9
Embodied Energy, MJ/kg 49
49
Embodied Water, L/kg 150
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
120
Resilience: Unit (Modulus of Resilience), kJ/m3 130
540
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 21
25
Strength to Weight: Bending, points 20
22
Thermal Diffusivity, mm2/s 4.1
11
Thermal Shock Resistance, points 13
23

Alloy Composition

Aluminum (Al), % 0
3.0 to 4.9
Carbon (C), % 0.0050 to 0.020
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 0
60 to 66
Iron (Fe), % 64.3 to 73.7
2.0 to 4.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 2.0
2.5 to 5.0
Nickel (Ni), % 9.0 to 13
0 to 1.0
Niobium (Nb), % 0.2 to 0.5
0
Nitrogen (N), % 0.060 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
22 to 28
Residuals, % 0
0 to 1.0