MakeItFrom.com
Menu (ESC)

AISI 347LN Stainless Steel vs. S32654 Stainless Steel

Both AISI 347LN stainless steel and S32654 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 72% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is AISI 347LN stainless steel and the bottom bar is S32654 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
220
Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 40
45
Fatigue Strength, MPa 200
450
Poisson's Ratio 0.28
0.28
Reduction in Area, % 56
46
Shear Modulus, GPa 77
82
Shear Strength, MPa 400
590
Tensile Strength: Ultimate (UTS), MPa 590
850
Tensile Strength: Yield (Proof), MPa 230
490

Thermal Properties

Latent Heat of Fusion, J/g 290
310
Maximum Temperature: Corrosion, °C 460
440
Maximum Temperature: Mechanical, °C 940
1100
Melting Completion (Liquidus), °C 1430
1450
Melting Onset (Solidus), °C 1380
1410
Specific Heat Capacity, J/kg-K 480
460
Thermal Conductivity, W/m-K 15
11
Thermal Expansion, µm/m-K 16
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 18
34
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 3.5
6.4
Embodied Energy, MJ/kg 49
87
Embodied Water, L/kg 150
220

Common Calculations

PREN (Pitting Resistance) 19
57
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
330
Resilience: Unit (Modulus of Resilience), kJ/m3 130
570
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
29
Strength to Weight: Bending, points 20
25
Thermal Diffusivity, mm2/s 4.1
2.9
Thermal Shock Resistance, points 13
19

Alloy Composition

Carbon (C), % 0.0050 to 0.020
0 to 0.020
Chromium (Cr), % 17 to 19
24 to 25
Copper (Cu), % 0
0.3 to 0.6
Iron (Fe), % 64.3 to 73.7
38.3 to 45.3
Manganese (Mn), % 0 to 2.0
2.0 to 4.0
Molybdenum (Mo), % 0
7.0 to 8.0
Nickel (Ni), % 9.0 to 13
21 to 23
Niobium (Nb), % 0.2 to 0.5
0
Nitrogen (N), % 0.060 to 0.1
0.45 to 0.55
Phosphorus (P), % 0 to 0.045
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.0050